References for: A history of Pi

  1. A Ahmad, On the π of Aryabhata I, Ganita Bharati 3 (3-4) (1981), 83-85.
  2. L Badger, Lazzarini's lucky approximation of π, Math. Mag. 67 (2) (1994), 83-91.
  3. P Beckmann, A history of π (Boulder, Colo., 1971).
  4. E M Bruins, With roots towards Aryabhata's π-value, Ganita Bharati 5 (1-4) (1983), 1-7.
  5. G L Cohen and A G Shannon, John Ward's method for the calculation of pi, Historia Mathematica 8 (2) (1981), 133-144.
  6. P Freguglia, The determination of π in Fibonacci's 'Practica geometriae' in a fifteenth-century manuscript (Italian), Contributions to the history of mathematics (Italian) (Modena, 1990), 75-84.
  7. N T Gridgeman, Geometric probability and the number π, Scripta Math. 25 (1960), 183-195.
  8. R C Gupta, The value of π in the 'Mahabharata', Ganita Bharati 12 (1-2) (1990), 45-47.
  9. R C Gupta, On the values of π from the Bible, Ganita Bharati 10 (1-4) (1988), 51-58.
  10. R C Gupta, New Indian values of π from the 'Manava'sulba sutra', Centaurus 31 (2) (1988), 114-125.
  11. R C Gupta, Lindemann's discovery of the transcendence of π : a centenary tribute, Ganita Bharati 4 (3-4) (1982), 102-108.
  12. R C Gupta, Some ancient values of pi and their use in India, Math. Education 9 (1975), B1-B5.
  13. R C Gupta, Madhava's and other medieval Indian values of pi, Math. Education 9 (3) (1975), B45-B48.
  14. R C Gupta, Aryabhata I's value of π, Math. Education 7 (1973), B17-B20.
  15. T Hayashi, T Kusuba and M Yano, Indian values for π derived from Aryabhata's value, Historia Sci. 37 (1989), 1-16.
  16. E W Hobson, Squaring the circle (London, 1953).
  17. C Jami, Une histoire chinoise du 'nombre π', Archive for History of Exact Sciences 38 (1) (1988), 39-50.
  18. S K Jha, and M Jha, A study of the value of π known to ancient Hindu and Jaina mathematicians, J. Bihar Math. Soc. 13 (1990), 38-44.
  19. P Jha, Aryabhata I and the value of π, Math. Ed. (Siwan) 16 (3) (1982), 54-59.
  20. R P Kulkarni, The value of π known to Sulbasutrakaras, Indian J. Hist. Sci. 13 (1) (1978), 32-41.
  21. K Nakamura, On the sprout and setback of the concept of mathematical "proof" in the Edo period in Japan : regarding the method of calculating number π, Historia Sci. (2) 3 (3) (1994), 185-199.
  22. C T Rajagopal and T V Vedamurti Aiyar, A Hindu approximation to pi, Scripta Math. 18 (1952), 25-30.
  23. R Roy, The discovery of the series formula for π by Leibniz, Gregory and Nilakantha, Math. Mag. 63 (5) (1990), 291-306.
  24. C Pereira da Silva, A brief history of the number π (Portuguese), Bol. Soc. Paran. Mat. (2) 7 (1) (1986), 1-8.
  25. D Singmaster, The legal values of pi, Math. Intelligencer 7 (2) (1985), 69-72.
  26. M D Stern, A remarkable approximation to π, Math. Gaz. 69 (449) (1985), 218-219.
  27. P E Trier, Pi revisited, Bull. Inst. Math. Appl. 25 (3-4) (1989), 74-77.
  28. I Tweddle, John Machin and Robert Simson on inverse-tangent series for π, Archive for History of Exact Sciences 42 (1) (1991), 1-14.
  29. A Volkov, Calculation of π in ancient China : from Liu Hui to Zu Chongzhi, Historia Sci. (2) 4 (2) (1994), 139-157.
  30. Y-L Zha, Research on Tsu Ch'ung-Chih's approximate method for π, in Science and technology in Chinese civilization (Teaneck, NJ, 1987), 77-85.

JOC/EFR August 2001

MacTutor History of Mathematics
[http://www-history.mcs.st-andrews.ac.uk/HistTopics/References/Pi_through_the_ages.html]